
TECHNICAL REPORT

45JTEKT ENGINEERING JOURNAL English Edition No. 1008E (2011)

Y. KOBAYASHI H. KATO K. TOYOZUMI

As automobiles have increasingly come to utilize electronic control in recent years, the streamlining of a software
development system has become essential for providing high-reliability software in a short development period. As
a means of securing reliability and a reduced development period, investigation was made on applying model-based
development, which has received much attention in recent years, to the development of mass-produced software of
JTEKT. This report describes the building of a software development process with the model-based development
applied, through which the development period is expected to be shortened by about 30% while maintaining
reliability equal to or higher than that of the conventional software development.

Key Words: model-based development, electronic control unit, software, high reliability, reduction of development period

High-Reliability Design of Software

Applying Model-Based Development

1. Introduction
In line with the trend of rapid computerization of

vehicles in recent years, the number of source code

lines of Electronic Control Units (ECU) software has

increased and its specifi cations have become complicated.

In addition, in response to requests for shortening

the development period, time is required to address

compliance to standards such as Automotive Software

Process Improvement and Capability dEtermination

(Automotive SPICE), Capability Maturity Model

Integration (CMMI), and others, which makes it

difficult to shorten the development period. Under such

circumstances, streamlining of software development

systems has become essential in order to achieve

shortened development period while securing reliability.

A model-based development has been attracting attention

as one means of achieving this.

A model-based development is a technique to carry

forward the development by creating models from the

function development stage and verifying the behavior

and performance. To mention two principal advantages

of this technique, one is that functions are able to be

designed and verified by simulatable models from the

upstream process. This can reduce the outfl ow of bugs to

the downstream process, reduce rework to the upstream

process, and eventually shorten the development period.

The other advantage is that the model is able to be reused

to software development. Ambiguity of requirements is

able to be eliminated, and at the same time software is

able to be automatically created from the model, and this

technique can thereby contribute to securing reliability

and shortening the development period
1)
.

When directing attention to the condition of JTEKT,

an increase of software functional requirements has

increased the number of source code lines by five to

ten times in the last ten years. In connection with this,

resources necessary for software development keep

increasing, too. In addition, requirement specifications

from functional development to software development

have sometimes caused rework due to misunderstanding

caused by the ambiguity of the content, and there has

been room for improvement in development effi ciency.

In order to solve the problems at JTEKT as described

above, investigation has been made on the application

of the model-based development to mass-production

development. In this report, a development process which

has been built to meet the JTEKT development patterns

is shown, and it has been confi rmed that this process has

enabled shortening of the development period by securing

high reliability in the design stage and streamlining

operations in each relevant process with reliability

equal to or higher than that of the conventional software

development maintained.

2. Construction of Software Development Process
In this chapter, the development process applying the

recently built model-based development and the work

contents implemented in each process are described.

In addition, maintenance of reliability compared to the

conventional development process is confi rmed.

−High-Reliability Design of Software Applying Model-Based Development−

46 JTEKT ENGINEERING JOURNAL English Edition No. 1008E (2011)

2. 1 Development Process Built
Figure 1 shows the conventional software development

process
2)

, Fig. 2 shows the software development

process investigated applying the recent model-based

development, and Table 1 shows the work contents in

each process.

2. 2 Difference in Process from Conventional One
In this section, discussion is made on differences

between the conventional development process and this

subject development process. However, advantages of

each process will be described later in Chapters 3 and

4. First of all, requirements for software development are

test patterns whose model has been verifi ed for functional

validity and its judgment criteria, in addition to the

simulatable model. Next, a Model In the Loop Simulation

(MILS) test has been added to the design stage as a new

process. This process verifies one functional unit of the

model as a target. To the function check test pattern

received as a request, each test pattern of white box/black

box is added and the model is verified in further detail.

By this, the reliability is secured before generating an

execution object, and rework is reduced. Next, a Processor

In the Loop Simulation (PILS) test is substituted for the

conventional unit test. This process targets verifying Fig. 1 Conventional development process

Requirement analysis

Structural design

System test

Detail design Unit test

Requirement

specifications

Execution object

Integration test

Requirements

Acceptance

test Products

Coding

Creation of execution object

Function

development

Fig. 2 Development process applying model-based development

Auto coding
Creation of execution object

Model and function
test patterns
and criteria

Acceptance
test

Products

Execution object

Requirements

Function
development

：Test pattern reusing is shown.
PILS：Processor

In the Loop Simulation
MILS：Model

In the Loop Simulation

(Legend)

Requirement analysis

Structural design

Detail design PILS testMILS test
Additional process

Integration test

System test

Table 1 Contents of main work in each process

Process Conventional Recent study
Requirement
analysis

Analysis of received requirements, requirements
classifi cation and securing of traceability

Same as before

Structural
design

Software structure and layout design, interface
design between modules

Software structure and layout design, interface
design between received model and software

Detail design
Design of function achieving method for single
module

Model recombination with mass productivity taken
into account

MILS test －
Creation of function/white box/black box test
specifi cation for received model, and test implementation

Coding
Coding based on detail design and static check
of standard compliance

Auto coding setting of auto coding tool, and static
check of standard compliance

Unit (PILS) test
Creation of function/white box/black box test
specification for function module, and test
implementation

PILS test implementation for function module using
reused MILS test pattern

Integration test
Creation of integration test specifications for
inter-module interface, and test implementation

Same as before

System test
Creation of test specifi cations under all modules
integrated conditions, and test implementation

Same as before

Acceptance test Performance check for requirements Same as before

−High-Reliability Design of Software Applying Model-Based Development−

47JTEKT ENGINEERING JOURNAL English Edition No. 1008E (2011)

the execution object that compiles software obtained

by auto coding. The execution object is written in the

microcontroller, and behavior is verified to secure the

reliability. This time, for test patterns, those used for the

MILS test are reused. Now, verifi cation is made to ensure

that the execution object operates in the performance

equivalent to that of the model received.

2. 3 Confi rmation for Maintaining Reliability
This section describes how reliability equal to that of

the conventional process is maintained for the execution

object. Conventionally, execution module reliability was

secured by four kinds of tests. In the process recently built

also, the integration test, system test, and acceptance test

perform behavior verifi cation equivalent to that conducted

by the conventional tests. However, the unit test has

conventionally performed the behavior verifi cation of the

execution object using a simulator or target ECU. On the

other hand, in the PILS test in the recently built process,

also, behavior is verified under the execution module

conditions using an actual microcontroller. As a result, the

unit test also can secure the reliability equivalent to that

of the conventional test. With the foregoing description,

verification equal to conventional method can be made

from the unit test to the acceptance test.

In addition, investigation was made on whether or not

the Software In the Loop Simulation (SILS) test should

be adopted, which was generally performed for securing

reliability. This was to carry out behavior verifi cation not

with the execution module but with the software as the

simulation target, and for test patterns also, test conditions

of the MILS test were reused as well as PILS test. The

difference was only the point of verifi cation not using the

execution object but using software, and fi nally, because

behavior confi rmation on the execution object level was

required, the adoption of SILS was shelved.

3. Shortening of Work Hours in Each Process
As described in Section 2. 2, it is possible to reduce

rework because the MILS test is added and behavior

is verified on the design stage. On the other hand, the

number of processes has been increasing and an increase

of the development period has been a concern. In this

chapter, measures for shortening the development period

of each process for which more work hours have been

conventionally taken are discussed, and the verification

results of the effect are shown.

3. 1 Analysis of Conventional Work Ratios
In this section, the process to be subject to period

shortening is analyzed from the work ratio in the

conventional process. Figure 3 shows the work ratio of

each process in one conventional project. Because work

of detail design, coding, and unit test accounted for a

large percentage, efforts have been primarily made to

shorten work hours of these processes.

3. 2 Measures for Shortening Work Hours in Detail
Design Process

In this section, discussion will be made on the work

hours which can be shortened through reduction of work

and improvement in review efficiency by substituting

the model for specifications generated in the detail

design process, and adding information and traceability

required for software to the model. Conventionally, in the

detail design process, detail design was performed for

achieving unit functions on the basis of the requirement

specifications, and specifications were created. On

the other hand, this time, because a model is received

as requirements, the achievement method is clearly

indicated in the model itself. Making use of this, it

has been decided to substitute the model itself for the

specifications. In this regard, however, because the

model only was short of information as compared to the

specifications conventionally created, it was decided to

add information and traceability, required as software, to

the model in this process. With the foregoing, the time

for investigating the achievement method and/or time

required for design review can be shortened, and the time

for creating specifications can be reduced because the

function achieving method is shown in the model itself.

In addition, functions for automatically outputting the

specifi cations of the information and the format equivalent

to those of the conventional JTEKT specifications from

the model have been built, and the improvement in review

efficiency using the model and paper specifications has

also become possible. As a result, work hours of this

overall process have been able to be shortened.

3. 3 Measures for Shortening Work Hours of
Coding Process

This section discusses how work hours can be

shortened by auto coding using the model in the coding

process. In the conventional coding process, based on

the detail design, coding has been performed. In this

study, auto coding using a model in place of this work

is performed. The work is only to substitute tool setting

in accordance with detail design, and shortening of the

Fig. 3 Work ratio in conventional development process

Detail design

22%

Coding

23%
Unit test

34%

Misc

21%

−High-Reliability Design of Software Applying Model-Based Development−

48 JTEKT ENGINEERING JOURNAL English Edition No. 1008E (2011)

process period is enabled. Tool setting is performed on the

basis of the information on detail design. It has become

possible to effi ciently create codes with high accuracy by

combining automated optimum design functions of the

tool based on the setting with the JTEKT setting know-

how accumulated to date. In addition, by linking the

code with the model (specifications) and building the

traceability, the comparison between the code and the

model has become easy, so that an efficient review has

become possible.

3. 4 Measures for Shortening Work Hours of MILS
Test and PILS Test Processes

This section discusses how work hours can be

shortened by using tools for test pattern analysis and

reusing the test patterns in the MILS test process and

the PILS test process. First of all, in the MILS test, test

specifi cations are created as is conventionally done. For

the function test portion, function test patterns received

as requirements are used. By this, the requirements,

specifi cations, and judgment criteria are able to be easily

shared with the requesting source. The test patterns and

judgment criteria are added to the model, and the validity

is confirmed by simulation. In the white box/black box

test, efforts have been made to shorten work hours to

enable the portion conventionally covered by the review

to be systematically and mechanically performed by

introducing the coverage analysis with tools. Next, in

the PILS test, as test specifications generated in the

MILS test are reused as they are, man-hours for creating

specifications do not occur. In addition, under the same

simulation environment as that of the MILS test, the test

case is also able to be reused as it is. Furthermore, the

report on the results is automatically created also, so, as a

result, the work in the PILS test is reduced.

3. 5 Verifi cation of Shortened Work Hours
In this section, for the work hours of each process

achieved to shorten work hours discussed in Sections 3. 2

through 3. 4, a part of functions of projects mass-produced

in the past is extracted, a model is created, and the results

of verifying reduction effects are shown. For the MILS

and the PILS tests, man-hours including both added are

compared to man-hours of the conventional unit test.

Figure 4 shows verifi cation results, and indicates the ratio

to the recent work hours when the work hours required for

the conventional development process are designated as

100%. In each process, the work hours are shortened, and

particularly the unit test has the work hours shortened by

more than one conventional unit test even if two processes

are combined in spite of an increase of the number of

processes. In each process that accounts for a large work

hour ratio, work hours can be shortened, and based on

conventional work ratio and shortening ratio of each

process, shortening of the development period by about

30% as a whole can be expected.

4. Reduction in Rework
In this chapter, measures to decrease rework in the

recently built development process are described, and the

verifi cation results of decreased rework hour as compared

to the conventional development process are shown.

4. 1 Measures for Rework Reduction
In this section, measures for decreasing rework in the

recently built development process are described.

Compared to the conventional development process, the

following three means are primarily able to be mentioned

as means for further decreasing rework. That is, ① as

requirements for software development, the model itself

is used for requirement specifications, ② in the stage

of design process, the MILS test is introduced, and ③

function test patterns used in functional development and

the judgment criteria is reused.

First of all, by using the requirement specifications

as the model, misunderstanding by ambiguity found in

conventional requirement specifi cations is eliminated. This

can eliminate difference in specifications interpretation

between requesting side and software development side,

and reduced rework is able to be expected.

Next, with respect to the addition of the MILS test, as

described in the preceding chapter, implementation of

the unit test is enabled in the design stage by the model

able to be simulated, and high reliability in the design

stage can be secured. Conventionally, the unit test was

conducted after the execution object was generated after

the coding process, and therefore the rework process

when a bug was found was markedly long.

Lastly, discussion is made on reduction in rework

achieved by the reused function test pattern used for

functional development as requirements and its judgment

criteria. Conventionally, in the unit test stage, a function

test of one-function module was conducted, and the

test specifications were created on the detail design

Fig. 4 Results of work-hour reduction in each process

Detail design Coding Unit test

W
o
rk

 h
o
u
r

ra
ti
o
,
%

Conventional process

Recently built process
120

100

80

60

40

20

0

−High-Reliability Design of Software Applying Model-Based Development−

49JTEKT ENGINEERING JOURNAL English Edition No. 1008E (2011)

specifications created by software developers. In this

regard, however, when any erroneous reading and/or

omission of requirement specifications occurred in the

detail design specifications stage, the test specifications

were created in accordance with such erroneous or

missing information, and accurate function tests were

sometimes unable to be implemented. In such event,

confi rmation whether or not the required functions were

achieved and discovery of bugs were left unattended

until the acceptance test, and therefore, large rework

was generated. Therefore, by reusing the function test

patterns created by function developers in the software

development process, misinterpretation of requirement

specifications and omission of function confirmation

have been able to be eliminated with higher accuracy. In

addition, comprehensive confi rmation of the MILS test has

enabled tests and reviews with testing personnel individual

differences reduced to a minimum to be conducted by

systematic standardization and automatization on the basis

of function test items, and the verifi cation accuracy of the

mass-production level is able to be secured before coding.

4. 2 Verifi cation of Reduced Rework Hour
This section shows results of comparatively verifying

the effects of the measures described in Section 4. 1

with the conventional process using a rework hour

calculation formula. The verifi cation is made with the bug

discovery conditions in the past JTEKT mass-production

development extracted and the similar bugs assumed to

be generated in the recent process. Based on the rework

hour calculation formula defined by the Equation ⑴,

comparisons have been made. Figure 5 shows how the

rework hour is summed as the process advances on the

basis of the Equaion ⑴. To the design process, the MILS

test is added, and because rework occurs in this process,

in the design process, the rework hour increases in terms

of the conventional ratio. However, because in this stage,

a large number of bugs are found, rework from the unit

test overriding processes of conventional specifications

review, coding, unit test conducted again, etc. is reduced.

Finally, results of reducing rework and reducing the

overall rework hour have been obtained as compared to

conventional cases.

Y

j＝1

Rework hour summation in process X

= Rework hour summation up

 to the preceding process + R
Zj

i＝1
R (Tij×gij)

⑴

where,

Y : number of bugs in process X

Zj : number of rework processes of jth bug in process X

Tij : rework hour in rework process i of jth bug in process X

gij : (increased) work efficiency ratio from that of

conventional cases in rework process i of jth bug in

process X

5. Measures for Further Reducing
Rework by Model Recombination

In this chapter, discussion will be made on measures

for further reducing rework by performing model

recombinations in advance in accordance with the

performance of generated object anticipated from the

model.

In the model-based development, high reliability is

secured by auto coding by the use of the model. On the

other hand, the performance of the execution object

constitutes an important requirement for deciding the

cost. Figure 6 shows the performance ratio to hand

coding when part of certain mass-produced software is

modeled and auto-coded.

It has been confi rmed that the performance of execution

object has been greatly improved from the previous

performance verification and is in the level of applying

to mass production. In this regard, however, the hand

coding ratio recently obtained is a result of recombining

models several times aiming at the performance matched

to the open resources of micro computer. Figure 7 shows

rework generated by code performance.

Fig. 5 Rework hour summation as the development process

advances

Recent process

Development process

R
e
w

o
rk

 h
o
u
r

s
u
m

m
a
ti
o
n

Design process

Conventional process

Test process

Bug remains in

test process, and

rework process is

long, so rework

hour increases.

Because test is performed in

design process, rework hour in

design process temporarily

increases more than before.

Reliability is increased in

design process, and rework

is reduced, so rework hour

is suppressed.

Fig. 6 Performance of execution object

62%

500

0
2005 2010

139%

198%

H
a
n
d
 c

o
d
in

g
 r

a
ti
o
,
%

Year

ROM capacity

RAM capacity

Operation speed

−High-Reliability Design of Software Applying Model-Based Development−

50 JTEKT ENGINEERING JOURNAL English Edition No. 1008E (2011)

References

1) CYBERNET SYSTEMS CO., LTD.: MATLAB/Simulink

wo Riyoushita Moderubeesukaihatsu no Torendo to

Syouraitenbou, Hito to kuruma no Tekunorogii ten

Seminaa shiryou (Seminar Material in Automotive

Engineering Exposition) (2009) 14.

2) INFORMATION-TECHNOLOGY PROMOTION

AGENCY, JAPAN, Software Engineering Center:

Kumikomi sofutouea muke Kaihatsu purosesu gaido,

SHOEISHA. Co., Ltd. (2007) 65.

* Electronics Engineering Dept., Steering System
Operations Headquarters

** System Development Dept., Steering System Operations
Headquarters

*** Electronics Engineering Dept., Steering System
Operations Headquarters, Doctor of Engineering

Y. KOBAYASHI
*

H. KATO
**

 K. TOYOZUMI

While making trial and error of model recombination

in this way, performance differences of generated objects

by model combination methods have been streamlined

and summarized. This has enabled to gradually optimize

the model in advance with this trend used as an indicator

in the detail design process. Even when models are

recombined, the function test is performed by the MILS

test, and the reliability is able to be secured, and therefore,

rework is able to be reduced without decrease of software

reliability.

6. Conclusion
The process with the recently investigated model-based

development applied has been confirmed that it is the

process that meets the JTEKT development pattern, and

application effect has been verifi ed. The process has been

also confi rmed to maintain the reliability equal to that of

software obtained through the conventional development

process. In addition, shortened work hours in each

process and the effect of improving the development

effi ciency by securing the high reliability from the design

stage have been verifi ed, and it has been confi rmed that

the development period is able to be shortened. Besides,

in the verifi cation of the recently built process, MATLAB

available from MathWorks has been used for the model,

and TargetLink available from dSPACE for the auto

coding and test tool. In addition, in this report, part of

joint research results with Toyota Central R&D Labs.,

Inc., is included, for which the authors will express their

thanks.

*1 MATLAB is a trademark of MathWorks.

*2 TargetLink is a trademark of dSPACE.

Fig. 7 Rework depending on code performance

Requirements analysis

MILS test

Auto coding

Creation of execution object

System test

Detail design PILS test

Acceptance

test

Function

development

Structural design Integration test

