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1.  Introduction
Vehicle wheels are supported by a suspension 

mechanism to absorb the vibrations caused by unevenness 
in the travel surface. A steering mechanism rotates 
front wheels around the vertical axis to turn the vehicle. 
Especially in FF (front-engine, front-wheel drive) 
vehicles, a complex spatial link mechanism where a wheel 
driving mechanism is incorporated in the suspension 
and steering mechanisms is packed in confined space 
and can be viewed as an art work of mechanical device. 
The suspension and steering mechanisms have also 
progressed over the long history of vehicles, and can 
be considered to be almost technically completed. But 
higher-performance electric power steering devices and 
the rise of electric vehicles have recently been creating 
the potential for vehicle drive system innovations and new 
four-wheel independent steering methods. New designs 
of the suspension and steering mechanisms will then be 
required.

New designs call for learning from the past by 
analyzing past mechanisms to thoroughly understand their 
designs. But ever-advancing vehicle design information 
is a corporate trade secret not accessible in detail. The 
author is a university professor specializing in link 
mechanisms and machine elements, and with previously 
little interest or knowledge in vehicle mechanisms. But 
when examining suspension and steering mechanisms, 
the author found that many vehicle guidebooks and 
manuals1)-5) showed many diagrams and photos without 
dimensions and specifications and did not explain 

the quantitative evaluations of suspension or steering 
performance in detail. On a more practical level, there 
was not enough information that could be included in 
teaching materials used to teach or instruct students in 
courses such as mechanical kinematics.

In this article, the kinematic analysis and the 
quantitative evaluation of motion performance of the 
suspension and steering mechanisms which are frequently 
used in commercial vehicles are explained based on the 
kinematics of the spatial linkage and the optimum design 
to improve the motion performance is then tried.

As mentioned, suspension and steering mechanisms 
have a long history of research and development. 
Therefore, each car builder accumulates expertise 
individually. The kinematic analysis presented in this 
article is just a kinematic analysis of a spatial linkage 
with rigid links. It is based on spatial geometry and 
vector analysis, and is not completely new method. 
However, since the black-box kinematic analysis with 
commercial software is recently becoming mainstream, 
it must be important to provide a geometry-based 
explanation conveying the essence of kinematic analysis. 
The author hopes that this article gives readers the better 
understanding of spatial linkage to apply to development 
of new mechanisms in future.

Aiming to understand suspension and steering mechanisms for vehicles, kinematic analysis of the MacPherson 
strut suspension mechanism and Ackermann-Jeantaud scheme steering mechanism which are frequently used in 
front engine-front drive small cars is explained based on the essential spatial geometry and vector analysis. Motion 
performance of vehicles due to the mechanisms is quantitatively evaluated with the fl uctuation of turning center and 
the transmissibility of steering mechanism. The process and results of the optimum design of the mechanisms based 
on the criteria of the motion performance are then explained.

Key Words:  steering mechanism, suspension mechanism, spatial linkage, kinematics, mechanism design, 
optimization
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2.  Suspension and Steering Mechanisms

2. 1 Suspension and Steering Mechanism Types
Axle suspension and independent suspension are the 

two main types of vehicle wheel suspension systems. 
Most passenger cars use independent suspension1)–6). 
The various types of independent suspensions available 
include trailing-arm, MacPherson strut, double wishbone 
and multi-link types. Compact passenger cars commonly 
use MacPherson strut suspensions since they have few 
parts and enable compact designs. Steering systems 
commonly transmit steering wheel rotation via a steering 
shaft, convert it into the left-right linear motion of a 
rack bar, and rotate the left/right front wheels around the 
vertical axis via tie rods. The linear motion of the rack 
bar is obtained with a pinion-rack mechanism or a ball 
screw. Most of today’s passenger cars use power assisted 
steering systems. Electric power steering systems use an 
assist motor to rotate the pinion or ball screw nut1)–6).

2. 2  Suspension and Steering Mechanisms to be 
Analyzed

This article deals with the MacPherson strut suspension 
mechanism commonly used in FF compact vehicles, 
along with the steering mechanism that converts the linear 
motion of the rack bar to rotate the front wheels via the tie 
rods. The motion conversion mechanism used to convert 
the rotation of the steering shaft to the linear motion of 
the rack bar is not discussed.

Figure 1 shows an overview of the mechanisms to be 
analyzed. Only the right-front wheel of an FF vehicle is 
shown in the figure. The hub carrier contains the wheel 
bearing that supports the drive shaft. It is supported by a 
strut composed of a spring and shock absorber, and by a 
suspension arm extending from the vehicle body. Steering 
is done by the linear displacement of the rack bar rotating 
the hub carrier around the kingpin axis via the tie rod and 
knuckle arm. The middle shaft keeps the wheel rotation 
speed constant during steering via two constant velocity 
joints.

Figure 2 shows Fig. 1 represented as a mechanism 
diagram. The diagram shows only the right half of the 
suspension and steering mechanisms, ignoring the wheel 
drive system (the mechanism from the middle shaft to the 
wheel bearing). The suspension and steering mechanisms 
can be assumed as a spatial link mechanism. The 
degrees-of-freedom of the spatial link mechanism can be 
calculated using Grübler’s formula as

⑴＝
＝

－ － －F N Jff（ （） ,）6 6
5

1f
1 R

where F is the mechanisms’ degree-of-freedom, N is the 
number of links (including fixed links), f  is the degree 
of freedom of a kinematic pair, and Jf is the number of 
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mechanisms

kinematic pairs having degree of freedom f . Figure 2 
shows that there are two prismatic pairs (P) and a revolute 
pair (R) with f = 1, and four spherical pairs (S) with f=3, 
therefore J1 = 3, J3 = 4 and N=6. Substituting these values 
into Eq. ⑴ yields:

⑵＝ ＝－ －［ ]F （ ）6 6 1 － ＋（ ）6 3 3 ,1 －（ ）6 43

indicating that  the mechanisms are spatial  l ink 
mechanisms with three degrees of freedom. Two of the 
inputs are the linear displacement of the rack bar, and 
the angular displacement of the suspension arm or the 
linear displacement of the strut. The other one degree 
of freedom is the rotation of the tie rod around the axis 
connecting the spherical pairs (ball joints) at both ends 
of the tie rod, which does not affect the motion of the 
suspension or steering. So this suspension-steering 
mechanism is a spatial link mechanism with two degrees-
of-freedom, in which the input displacement of the 
suspension and the steering input are given independently.
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3.   Kinematic Analysis of Suspension and 
Steering Mechanisms

3. 1 Previous Research
Kinematic analysis of MacPherson strut suspension-

steering mechanism has a long history with a highly 
extensive literature7)–12). The research initially used a 
simplifi ed model with coinciding strut and kingpin axes. 
This model later gave way to a detailed three-dimensional 
model, providing precise analysis. Analysis work often 
derives and solves closed-circuit vector equations 
of spatial mechanisms, and is difficult to understand 
geometrically. Researchers are also recently starting to 
analyze commercial multibody systems and solving for 
both motion and dynamics. However, such analysis is 
becoming a black box process.

This article therefore endeavors to explain the analysis 
procedure in a way that makes the geometry easy to 
understand.

3. 2 Analysis Procedure
Figure 3 is a mechanism diagram showing only the 

strut, hub carrier and tie rod of Fig. 2. A static coordinate 
system O-xyz is fi xed to the vehicle body, and a moving 
coordinate system RWC-ngf is set with the center of 
the front wheel as its origin and the axle as the n axis. 
Kinematic pairs are distinguished by two subscript letters 
that defi ne each pair’s position vector. For example, the 
spherical pair that connects the tie rod and knuckle arm 
on the hub carrier is written SOB. Its position vector in the 
static coordinate system is written POB. The values given 
as mechanism constants are the tie rod length LT, the 
RWC-ngf coordinate system position vectors pSU, pOB and 
pKP of the spherical pair SSU at the strut top end, spherical 
pair SOB and kingpin spherical pair SKP, as well as the unit 
direction vector uS from the strut bottom end Q to strut 
top end SSU.

As described in Section 2, the mechanism to be 
analyzed has two independent inputs. If these two inputs 
are assumed as a linear displacement of the rack bar 
and an angular displacement of the suspension arm, the 
position vector, PIB, of spherical pair SIB connecting the 
rack bar and tie rod, and the position vector, PKP, of the 
kingpin spherical pair SKP can be easily calculated.

The first step is to determine the strut displacement. 
The position vector of spherical pair SSU at the strut top 
end is given by the equation below in the RWC-ngf 
coordinate system.

⑶＝SUｐ SBｐSku ＋
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Fig. 3  Positions of kinematic pairs in the suspension and 

steering mechanisms

Expressing the distance between SSU and SKP in the 
O-xyz  and RWC-ngf coordinate systems yields |pSU – 
pKP| = |PSU – PKP|. Substituting Eq. ⑶ into this equation 
and solving the quadratic equation for k yields:

⑷

＝－ －k Su
Su［
・（ ）

）
SBp KPp
－ －・（ ・（）］SBp KPp －（ ）SBp KPp －SBp KPp

＋

＋ ）.・（－（ ）SUP KPP －SUP KPP2

The kingpin axis-direction unit direction vectors in the 
RWC-ngf and O-xyz coordinate systems are given by the 
following equations.

⑸Ku ＝
－

,SUp KPp
－SUp KPp| | KU ＝

－SUP KPP
－SUP KPP| |

The hub carrier acquires the SOB displacement and 
rotates around the kingpin axis. With H as the foot of the 
perpendicular descending from SOB to the kingpin axis, 
the position vector in the RWC-ngf coordinate system is 
given as

⑹＝ .ℓ ＋Hp KPpKu

The condition of orthogonality yields:

⑺＝ .0－Hp OBp Ku（ ）・

Substituting Eq. ⑹ into Eq. ⑺ and solving for ℓ yields:

⑻＝ℓ OBp KPp Ku（ － ） .・

The position vector of H in the O-xyz  coordinate 
system is given by:

⑼＝ ,ℓHP HU KPP＋

and the distance between SOB and H is given by:

⑽＝ .OBr OBp Hp－（ OBp（） Hp－ ）・
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Viewing rotation around the kingpin axis as rotation by 
a revolute pair at H, the two links of SIB – SOB – H are the 
two linkages of spherical pair – spherical pair – revolute 
pair. If the positions and postures of the revolute pair and 
spherical pairs at both ends are provided for these two 
linkages, the position of a spherical pair in between can 
be calculated13). In other words, the spherical pair SOB is 
geometrically defined as the intersection of the sphere 
centered at SIB with radius LT (the tie rod length) and the 
circular ring with radius rOB centered at H (Fig. 3).

To find this point of intersection, consider a spatial 
plane containing the circular ring with radius rOB centered 
at H. A new moving coordinate system H-nH gH fH with 
H as its origin is set in this plane. The fH axis is set in 
the uK direction. Let the nH axis direction be the common 
normal to the fH axis and a line that passes through SIB 
and runs parallel to the fH axis. Now we fi nd point V, the 
other foot of this common normal. If the position vector 
of V in the O-xyz coordinate system is given by:

⑾＝ .VP KU IBPm ＋

The condition of orthogonality yields:

⑿＝HP VP KU（ － ）・ 0 .

So substituting Eq. ⑾ into Eq. ⑿ yields:

⒀＝ .P IBH P KUm （ － ）・

From the position vectors obtained above, the unit 
direction vectors in the fH, nH and gH axis directions can 
be written in the O-xyz coordinate system as:

⒁HK HK＝ .
－

, ,HP VP
－HP VP| |HU HI HI＝ ×HJ ＝

Using the unit direction vectors of Eqs. ⒁, the 
coordinate transformation matrix for rotating from the 
H-nH gH fH coordinate system to the O-xyz  coordinate 
system is given by the formula below.

⒂［ ］ ］HT ［ HI HJ HKT＝

Figure 4 shows V, SOB and H in the nH gH plane in the 
moving coordinate system H-nH gH fH.

The position vector of SOB  in the H-nH gH fH 
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Fig. 4  Position of outer ball joint

coordinate system is therefore given geometrically by:

⒃（ ）OB H,p OBr sin
0
c p＝

,

－

（ ）OBr cos c p－

where,

⒄

＝

＝Tr

c cos
2

－1
2

VP IBP－－（ ） VP IBP－（ ）・

＋ － ,

,

OBr
OBr

2
Tr

2
TL

＝ .VHL HP VP－（ ） HP VP－（ ）・

2
VHL
VHL

Using Eqs. ⒂ and ⒃, the position vector of SOB in the 
O-xyz coordinate system can be calculated as

⒅［ ］HTOBP HPT＝ .＋OB H,p
For three points on the hub carrier (SOB, H, and 
SKP), the position vectors pOB, pH, and pKP in the RWC-
ngf coordinate system and the position vectors POB, 
PH, and PKP in the O-xyz  coordinate system have now 
been found. From these position vectors, the coordinate 
transformation matrix for rotating from the RWC-ngf 
coordinate system to the O-xyz  coordinate system is 
given as

⒆［ ］T T

T

T＝ ,］［ KPI
KPi
T
KPj
T
KPk

KPJ KPK

where IKP, JKP, and KKP are the nKP, gKP and fKP axis 
unit direction vectors as seen in the O-xyz  coordinate 
system and iKP, jKP and kKP are the nKP, gKP and fKP axis 
unit direction vectors as seen in the RWC-ngf coordinate 
system, for a new moving coordinate system fixed in 
DSKPSOBH, having its origin at SKP, having the direction 
normal to DSKPSOBH as the fKP axis, the SKPSOB direction 
as the nKP axis, and the direction orthogonal to these axes 
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as the gKP axis. These unit direction vectors can now be 
calculated using the equations below.

⒇

KPI
KPI＝

－
, , ,OBP KPP

－OBP KPP| | KPK ＝
－×（ ）HP KPP

KPJ ×＝ KPK KPI
KPI －×（ ）HP KPP| |

KPi
KPi＝

－
, ,OBp KPp

－OBp KPp| | KPk ＝
－×（ ）Hp KPp

KPj ×＝ KPk KPi
KPi －×（ ）Hp KPp| |

The origin of moving coordinate system RWC-ngf (the 
center of the front wheel, RWC), and the position vector 
of the strut bottom end Q in the O-xyz coordinate system 
are given by:

21［ ］TWCP HP T＝ ,－ Hp

22［ ］TSBP WCPT＝ .＋SBp

The strut length is given by:

23＝ .q SUP SBP－（ ） SUP SBP－（ ）・

The motions of the suspension-steering mechanism 
have now all been found for the case in which two inputs 
(the translational displacement of SIB and the displacement 
of SKP from the angular displacement of the suspension 
arm) have been provided for the suspension-steering 
mechanism. The calculations above are entirely analytical 
and free from any numerical approximations. While not 
covered in this article, the velocity, acceleration, angular 
velocity and angular acceleration of each link or pair can 
be analytically calculated by time differentiation of all 
the equations. Analytical application of inverse dynamics 
analysis could also make it possible to fi nd a mechanism’s 
drive force/drive torque or the forces and moments acting 
on each pair when the mechanism is performing the 
desired motion while subject to an external force.

4.   Examples of Kinematic Analysis and 
Motion Performance Evaluation

4. 1 Example of Analysis
This section provides an analysis of a mechanism 

having the specifications listed in Table 1. The values 
shown are actual measurement values for a mechanism in 
a given compact FF vehicle. They represent items such as 
the position vectors in the O-xyz coordinate system fi xed 
to the vehicle body, for kinematic pairs in the suspension-
steering mechanism of the right front wheel when the 
steering amount is zero (during straight-line travel). 
When the left and right mechanisms are completely 
symmetrical, the origin O of the O-xyz coordinate system 
is the midpoint of the centers of the left and right front 
wheels during straight-line travel, the +y direction is the 
direction of forward vehicle travel, and the +x direction 
is the vehicle’s right direction. The camber angle and toe 

angle of the left and right wheels are considered to be 
zero during straight-line travel. PRP in the table is the rack 
bar’s center position, PSA is the position of the revolute 
pair at the base of the suspension arm, KSA is the unit 
direction vector of the revolute pair in the rotational axis 
direction, W is the distance between the centers of the left 
and right wheels, and L is the distance between the front 
and rear wheel axles during straight-line travel. LT is the 
tie rod length and LS is the suspension arm length, as 
determined dependently on other values in the table. The 
rack bar in this example is positioned in front of the front 
wheel axle.

The mechanism’s main constants are the position 
vectors as seen in the moving coordinate system RWC-
ngf on the hub carrier. They are given by the equations 
below, from the position vectors given in Table 1 as seen 
in the O-xyz coordinate system during straight-line travel.

24

OBp ＝ ,OB, 0P WC , 0P

－

－

SBp ＝ .,SB , 0
SB , 0P WC , 0P－

KPp ＝ ,KP , 0P WC , 0P－

SUP P
－ SB , 0SUP P| |Su ＝

The analysis procedure of Section 3. 2 was used 
to analyze the motion of the mechanism having the 
specifications of Table 1. The analysis range is from 
maximum left-turn steering, to straight-line travel, and 
to maximum right-turn steering. In other words, the rack 
bar displacement range is –smax s smax (s  = 0 during 
straight-line travel).

Figure 5 shows how the left and right steering angles 
(hL, hR) and camber angles (uL, uR) vary in relation to 
rack bar displacement, s , when the suspension arm is 
fi xed as it is during straight-line travel. The steering angle 
is defined as the angle between the x  axis and the xy 
plane projection of the vector of the n axis of the moving 
coordinate system RWC-ngf fixed at the center of the 
front wheel. The camber angle is defined as the angle 
between the z  axis and the yz  plane projection of the 
vector of the f axis. The n axis of the moving coordinate 
system fi xed at the center of the left front wheel is set so 
that the vehicle’s right direction is positive. The g axis is 
set so that the vehicle’s forward direction is positive. So 
during straight-line travel, the moving coordinate systems 
of the left and right front wheels RWC-ngf have identical 
postures. The maximum rack bar displacement smax given 
by the calculation results in a steering angle with an 
absolute value of hmax = 45°.

The  s t e e r i ng  ang l e s  o f  Fig .  5  ( a )  dec r ea se 
monotonically relative to rack bar displacement, s . 
Using hL = hR = 0° for s  = 0, we can see that hL (–s) 
= –hR (s) and hR (–s) = –hL (s). The camber angles of 
Fig. 5 (b) are a characteristic of the MacPherson strut 
suspension mechanism. As shown, they vary with rack 
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bar displacement, s, with the wheels tilting in the turning 
direction. Figure 5 (c) plots the difference between the 
right and left steering angles. This left-right difference 
is generated in accordance with rack bar displacement, 
s , and illustrates the performance of a feature called 
the Ackermann-Janteau scheme1)–6) that enables lines 
extending from the axles of the left and right front wheels 
to intersect.

Table 1   Dimensions of a suspension and steering mechanism 
to be analyzed

（Unit：mm, except KSA）
PWC, 0 （730.0，0.0，0.0）T PSA （350.0，220.0，－68.0）T

PSU （560.0，－57.0，470.0）T KSA （0.0324，0.9947，－0.0972）T

PSB, 0 （590.0，－5.0，54.0）T W 1 460.0
PKP, 0 （680.0，17.0，－86.0）T L 2 500.0
PRP （0.0，77.0，48.0）T LT 414.38
PIB, 0 （280.0，77.0，48.0）T LS 387.86
POB, 0 （690.0，120.0，6.0）T
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Fig. 5  The analyzed steering and camber angles

Figure 6 plots the circles in the center of the width 
direction of the mechanism and wheels, showing plots 
of four postures (s/smax = –1, –0.5, 0, 0.5, 1). The white 
circles in the graph are the spherical pairs at the tie rod 
ends (SIB and SOB), the red circles are the wheel centers 
(RWC), and the blue circles are the kingpins (SKP). As 
shown, the camber angle increases and the wheel center 
position fl uctuates as the vehicle turns.

Figure 7 shows the effect of the suspension arm 
angular displacement w on the right wheel steering angle 
and camber angle when s  = 0 and s  = smax. Dq  in the 
graph is the strut length variation. The graph shows that 
the camber angle increases as the strut extends, and then 
decreases from strut contraction due to centrifugal force 
once the turn outer ring has been reached. The graph also 
shows that the effect on the steering angle is small during 
straight-line travel.
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Fig. 6  Skeleton diagram of the mechanism while steering
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4. 2 Motion Performance Evaluation
This section uses the analysis results to evaluate 

the suspension and steering mechanism’s motion 
performance.

4. 2. 1 Turning Center Fluctuation
Turning center fluctuation is the first item for 

evaluation. Figure 8 shows wheel motion during an 
ideal turn, which has been covered by several different 
literatures. Assuming a camber angle of zero and looking 
at the xy plane, the vehicle’s turning center is defi ned as 
the point C where lines extending from the axles of the 
steered front wheels intersect a line extending from the 
rear wheel axle. Being able to steer the two front wheels 
in this way is held to prevent skidding. But the one degree 
of freedom of the steering mechanism makes it impossible 
to perfectly execute this type of ideal steering, resulting in 
turning center position fl uctuation. In other words, lines 
extending from the axles of the two front wheels intersect 
a line extending from the rear wheel axle at CL and CR as 
shown in Fig. 9. The midpoint of these two intersection 
points is defi ned as the virtual turning center C, and the 
distance between the coordinate system’s origin O (the 
midpoint between the two front wheel centers) and C is 
defi ned as the turning radius R. As shown in the equation 
below, let the turning center fluctuation assessment be 
defined as the sum of the absolute values of the angles 
(DhL and DhR) formed by the central axis of each front 
wheel and the line segment OC.

25L＝ ＋| |j Dh R| |Dh

Before evaluating the mechanism, the ideal steering 
angle first needs to be considered. Given a right 
front wheel steering angle hR(s ) within the rack bar 
displacement range 0  s   smax (right turn), the left 
front wheel steering angle hL(s ) can be determined. 
The x  coordinate of turning center C in Fig. 8 is given 
geometrically by:

26＝ .－TCx RL s（
2

cot ）h
W

When the straight line passing through the axle of the 
left front wheel passes through point C, the left front 
wheel steering angle hL(s) is given by:

27＝－ －1
L

Ls（ tan）h
W－ RL s（cot ）h

For a left turn, hL(–s) = –hR(s) and hR(–s) = –hL(s) 
can be used as described previously. So hR(s) should be 
set in a form enabling smooth steering ranging from a left 
turn, to straight-line travel, to a right turn. The conditions 
for hR(s) are set as follows:

⑴ hR(0) = 0
⑵ hR(smax) = –hmax
⑶  The first and second derivatives of hR(s ) are 

continuous during left and right turns.
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If hR(s ) were given as a linear function of s  for 
example, Condition ⑶ would clearly not be satisfi ed. So 
the function will be given in the following form:

28＝ ＋ ＋ ks
R s s（ ）h C 0 C 1 eC 2

where C0, C1 and C2 are unknown coeffi cients and k is 
a constant. The exponential function term has been added 
to provide variation in the rate of change with respect to 
s. The constant term C0 has been added on the other end 
as an adjustment used to satisfy the condition hR(0) = 0.

Conditions ⑴ and ⑵ above yield the equations below.

29＝ ＝，
ks

s
1

C 0 C 0C 2
C 1

e
h      max

max

max

－
－

＋

So C0, C1 and C2 are given by linear functions of C1. 
Condition ⑶ now yields the equation below (details 
omitted).

30
d
ds

＝L 0（ ）h
d
ds R 0（ ）h
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So fi rst derivative continuity has been established. Now 
from the condition of second derivative continuity, using

31
d
ds

＝R 0（ ）h
2

2
d
ds L 0（ ）h
2

2

yields the equation below by solving for C1 (details again 
omitted).

32＝ ,
4C 1

b ac
2a
b－ －＋ 2

where,

33

＝ ＝， ，a

c d

bd 2

2

W

We

W L

L＝ ＝
－

＋

＋

＋ ＋（

（

（1 2 We

e

2）

， ，）

）

h

k

k

dkdekk

maxs
ks 1e max－

e ＝ － max

ks 1e max－

So a steering angle function that satisfi es Conditions ⑴ 
to ⑶ for a given k has been found.

Figure 10 shows the calculation results for the ideal 
steering angle function when k = 5.0. As shown, the 
derivative is continuous. The turning center fluctuation 
assessment here is always j = 0. Comparing these results 
to Fig. 5 reveals a large difference between the left and 
right steering angles.

Now we’ll evaluate steering performance for the 
example analysis of Fig. 5. Figure 11 (a) plots the turning 
radius. Figure 11 (b) plots Dh—the difference between 
the hL(s) values of Fig. 5 and the hL(s) values calculated 
from Eq. 27 using the hR(s ) results of the example 
analysis. Figure 11 (c) shows turning center fl uctuation 
assessment j (Eq. 25). Figures 11 (b) and 11 (c) show 
that turning center fluctuation increases as the absolute 
value of the steering angle increases.

4. 2. 2 Motion Transmissibility Evaluation
This section evaluates whether steering can be executed 

without any statical problems caused by either turning 
center fl uctuation or rack bar linear displacement, s. When 
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suspension mechanism strut displacement is ignored and 
the kingpin axis is considered a revolute pair at point H, 
the steering mechanism of Fig. 3 can be considered a 
spatial slider crank composed of a rack bar, tie rod and 
knuckle arm. So the pressure angle a between the tie rod 
and knuckle arm can be evaluated. From Fig. 3, a can be 
calculated as

34
－OBP HP
－OBP HP| |

－OBP IBP
－OBP IBP| |KU ・×＝

.
a cos－1

Figure 11 (d) plots the change in pressure angles 
between the left and right tie rods and knuckle arms of the 
example analysis. As shown, the pressure angles increase 
as the absolute value of the steering angle increases.

5.  Optimum Design
An attempt was made to derive the optimum design 

using the mechanism performance indexes covered in 
Section 4. The design covers the steering mechanism 
only, leaving the MacPherson strut suspension mechanism 
specifications unchanged. Specifically, the mechanism’s 
performance was improved by changing the rack bar 
position, rack bar length, tie rod length, and the position 
of the spherical pair connecting the tie rod and knuckle 
arm on the hub carrier. But to satisfy the straight-line 
travel condition applicable when rack bar displacement 
s = 0, the six component variables of the kinematic pair 
position vectors PIB, 0 and POB, 0 for the straight-line travel 
state of Table 1 are handled as design variables.

The ideal steering angle function of Eqs. 27 and 28 
explained in Section 4 could be set as the objective 
function for optimization, and the generated steering 
angle functions could be optimized to match it. But 
that approach would be difficult and not enable motion 
transmissibility to be evaluated at the same time.

Instead, jRMS is used as the turning center fl uctuation 
objective function for optimization and amax as the 
motion transmission characteristic objective function for 
optimization. jRMS is the RMS value of evaluation index 
j within the rack bar’s permissible movement range, and 
amax is the maximum value of pressure angle a between 
the tie rod and knuckle arm. Since lower values are more 
desirable for both of these variables, optimization is 
carried out to minimize the objective function.

The fi rst step is to estimate how the objective functions 
change in response to minute adjustments to these design 
variables. Figure 12 shows how objective functions 
jRMS and amax are affected by minute changes made to 
the Table 1 value of each design variable independently 
(the p  of Dp  is the applicable design variable). 
While naturally these plots only show results in the 
neighborhood of the Table 1 values, they show that the x 

position of the spherical pair SIB (xIB, 0) and the y position 
of the spherical pair SOB (yOB, 0) have high sensitivity 
and increase or decrease in inverse correlation to the two 
objective functions jRMS and amax.

So to cover both of the objective functions, the six 
design variables are optimized using the equation below 
(the linear sum of both functions) as the objective 
function.

35＋＝

（ ）U

j

xIB
RMS

, 0

w1 amaxw2
, yIB, 0 , zIB , 0 , xOB , 0 , yOB , 0 , zOB , 0

The downhill simplex method14) is used as the 
optimization method, with suitable side constraints 
imposed on the design variables to account for the 
space occupied by the mechanism. The smax value is 
also corrected each time to keep the maximum steering 
angle at hmax = 45°, since changing the mechanism 
specifi cations could result in different maximum steering 
angle hmax values for the same rack bar maximum 
displacement smax value.

Figure 13 shows the optimization result for (w1, w2) 
= (1.0, 0.0), which covers only turning center fl uctuation. 
Figure 13 (a) shows the turning center fl uctuation index 
j, Fig. 13 (b) shows the pressure angles a, and Figs. 13 
(c) and (d) are skeleton diagrams. As shown in the graph, 
there is signifi cant reduction in index j. But the maximum 
pressure angle is slightly larger than the initial value, and 
the motion transmission characteristic deteriorates despite 
an improvement in turning performance.
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(b) Maximum pressure angle
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Figure 14 shows the optimization result for (w1, w2) = 
(1.0, 12.0). The graphs show that the resulting mechanism 
managed to improve on the initial values for both the 
turning center fl uctuation index j and the pressure angles 
a, indicating that the multi-objective optimization was 
successful. The resulting mechanism has a longer rack 
bar but a shorter tie rod. A longer rack bar might not 
necessarily be beneficial as problems from its elastic 
deformation could be foreseen. Although handled by 
the side constraints imposed on the design variables, 
spherical pair SOB is positioned fairly close to the wheel 
center. So the space occupied by the mechanism that was 
not accounted for by this article should possibly also be 
added to the objective functions for optimization.

6.  Conclusion
To gain an understanding of the workings and motions 

of vehicle suspension and steering mechanisms, this 
article has presented the example of a MacPherson strut 
suspension mechanism and a steering mechanism driving 
a hub carrier using a rack bar and tie rod. The kinematic 
analysis of these mechanisms as a spatial link mechanism 
with 2 degrees-of-freedom was explained. By using the 
analysis, the motion performance evaluation was carried 
out and the optimum design with the evaluated quantities 
as objective function was tried.

While the kinematic analysis method is not new, a 
simple explanation of it has been provided in the form 
of vector analysis based on the essence of the spatial 
geometry determining the mechanism motion. This 
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