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TECHNICAL PAPER
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A method for predicting the quality of plastic products produced by injection molding using sensing data 
obtained inside molds and machine learning was proposed, and its effectiveness was verified by comparing 
predicted and experimental results. Technology to modify molding conditions automatically was then developed 
based on the obtained predicted results.
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Quality Prediction of Molded Products with Machine Learning 
Using In-mold Sensing Information

1.  Introduction
In recent years, with accelerating global-scale efforts 

and ESG investment aimed at sustainable development 
targets, the importance of environmentally friendly 
manufacturing is growing. In the automobile industry, in 
addition to the development of electric vehicles and fuel 
cell vehicles, part weights are being reduced in order to 
improve fuel economy, and the change from metal parts 
to plastic parts is accelerating.

In the injection molding process for ordinary plastic 
parts, external factors can change the melt viscosity and 
alter the molding results. For this reason, the operator 
adjusts the molding conditions as necessary in order 
to maintain quality, and that quality is affected by the 
operator’s level of experience. For this reason, from the 
perspective of stabilizing quality that is not dependent on 
the level of experience, studies are proceeding for making 
the molding machines themselves more intelligent. For 
example, Shioiri et al. have constructed a technology 
for predicting quality in the injection molding process 
using information such as the molding conditions and a 
neural network1). While it is known that molding quality 
is highly dependent on factors such as the plastic flow 
behavior inside the mold2), because mold shapes vary 
widely depending on the part being molded, the plastic 
flow behavior is not always the same, and obtaining 
universal knowledge is difficult. For this reason, there are 
currently few studies related to quality predictions using 
information from inside the mold.

This report constructs a quality prediction method for 
molded products using machine learning and various 
information from the molding process, including in-
mold sensing information. As one example of injection 

molded products, this method is applied to the mass and 
inner diameter of the ball bearing plastic retainer (Fig. 1) 
that is an important JTEKT product. It also verifies the 
effectiveness of this method by comparing the prediction 
results and actual measured results for the mass and 
inner diameter. Furthermore, we attempt to automatically 
modify the molding conditions using the prediction 
results in order to stabilize quality. In plastic molding, 
air remaining inside a molded product may produce a 
phenomenon known as “voids,” which may lower the 
strength of a functional part and may result in fracture. In 
order to accurately determine whether or not these voids 
are present, an X-ray CT method is effective, however this 
measurement requires a long time and it is not practical 
to measure all molded products. Therefore this study uses 
the molded product mass as a substitute quality index for 
void management. The inner diameter is a quality index 
for managing the required dimensional tolerances.
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Fig. 1  Ball bearing components



−Quality Prediction of Molded Products with Machine Learning Using In-mold Sensing Information−

71JTEKT ENGINEERING JOURNAL English Edition No. 1020E (2024)

2.  Study of a Quality Prediction Method
2. 1 Necessity of In-mold Sensing Information

It is known from previous studies2) that molding quality 
is highly dependent on the plastic flow behavior inside the 
mold. For this reason, it is considered possible to predict 
quality with high accuracy by using information about 
plastic conditions inside the mold during molding.

2. 2 Use of Machine Learning
It is known that molten plastic during the molding 

process exhibits non-linear behavior typified by its PVT 
properties. PVT properties are properties which change 
the plastic specific volume (units: cm3/g) according to the 
plastic temperature and the applied pressure. Furthermore, 
because plastic changes from molten to solid in a short 
time during the molding process, it is expected that 
its temperature and viscosity also change rapidly. In 
consideration of this point, the use of a machine learning 
method that can consider non-linearity is considered to be 
effective for quality predictions.

In order to achieve high accuracy quality predictions, 
we studied a quality prediction method using in-mold 
sensing information and a machine learning method that 
can consider non-linearity.

3.  Machine Learning
3. 1 Selection of a Method

Prediction of the mass and inner diameter requires 
predicting continuous values, and is classified as a 
regression problem in machine learning. Typical machine 
learning methods that can be applied to regression analysis 
are shown in Table 1. Regression analysis methods are 
broadly divided into linear regression methods and non-
linear regression methods. Because each method has its 
own characteristics, it is necessary to select a method 
according to the purpose. For example, when using an 
approach that requires a large volume of data such as 
with a neural network, at the trial stage in manufacturing 
or other industry, the small amount of available data may 
result in insufficient accuracy. Therefore in this study, 
we used Support Vector Regression (hereafter “SVR”) 
for two reasons: first that it can consider non-linearity 
as mentioned in Section 2. 2, and second that it can be 
expected to produce high prediction accuracy with a 
relatively small volume of learning data3).

3. 2 Overview of SVR
SVR uses a kernel method to achieve modeling that 

considers non-linearity. A kernel method is a method of 
linear modeling in a non-linear space by performing high-
dimensional non-linear conversion of the feature vectors 
contained in the learning data. SVR is learning that aims 
to minimize Formula １.
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However,
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Here, yi and xi are data of number i  that is used in 
learning. w is the weight vector; ε is the error threshold 
value; and C  is a coefficient that adjusts the weighting 
between the two terms. Minimizing Formula １ achieves 
non-linear modeling that balances suitability for the 
learning data with generalization performance. The kernel 
function used in the kernel method uses the Gaussian 
kernel shown in Formula ⑶.

⑶＝x x － － '（ 2） ‖ ‖, 'K e x xc

e , C , and c are coefficients that must be optimized 
according to the features of the learning data. In this 
study, they were decided using a method known as “grid 
search.” Grid search systematically and comprehensively 
moves each coefficient a little at a time while calculating, 
and selects the combination which has the highest 
calculated accuracy. Because this method is intuitively 
easy to understand, it is widely used in the machine 
learning community4).

Method Name Characteristic

Linear
Methods

Simple Regression
Easier interpretation of 

result

Multiple Regression
Easier interpretation of 

result
Ridge Regression Prevent overfitting

Non-linear
Methods

Support Vector 
Regression

High accuracy with 
relatively few data

Random Forest
High accuracy with 
relatively few data

Neural Network
Very high accuracy with 

much data

Table 1  Typical regression analysis methods
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4.  Test Method
4. 1 Collection of Molding Data

Injection molding tests were conducted using an 
SR100H (product of Sumitomo Heavy Industries) as the 
molding machine, and polyamide material reinforced 
with glass fibers as the plastic material. Here, in order 
to identify the plastic conditions inside the mold during 
molding, pressure sensors and infrared detection-type 
temperature sensors were installed inside the mold to 
measure pressure and temperature. The layout of the 
sensors installed inside the mold is shown in Fig. 2. An 
example of the measurement results from the installed 
pressure sensors is shown in Fig. 3. Measurement was 
started using molding machine injection start as the 
trigger, and a pressure history was obtained for the filling, 
holding, and cooling processes at the weld, gate, runner, 
and nozzle. To obtain quality data of the molded product, 
an electronic scale and profile measurement machine 
were used to measure the mass and inner diameter.

4. 2 Creation of Features and Dataset
Generally when handling time-series data as learning 

data for machine learning, the characteristic parts of 
the data are extracted and identified as features in order 
to improve the learning model accuracy and learning 
efficiency. In this study, 120 types of features, including 
maximum values and integrated values of specific ranges, 
were created from the pressure and temperature histories 
acquired by the sensors installed inside the mold. By 

Temperature sensor

Pressure sensor

Nozzle
side

Fig. 2  Sensor layout
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Fig. 3  Sensing data inside the mold

associating these features with corresponding quality data, 
they were consolidated as a learning dataset (Table 2).

Table 2  Dataset
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4. 3 Selection of Important Features
With a machine learning method that uses regression 

analysis such as SVR, overfitting is less probable to occur 
when there is a smaller number of explanatory variables 
used in learning5). In the fields of statistics and machine 
learning, overfitting is a phenomenon that significantly 
lowers prediction accuracy when the prediction is 
excessively tailored to the data that was used for learning, 
reducing its suitability for use with unknown data. 
Therefore in order to avoid overfitting, it is preferred 
that the optimal explanatory variables be selected using 
knowledge and expertise based on molding theory 
and experience. However when handling a complex 
phenomenon such as plastic molding, it is not easy to 
select suitable variables based on an understanding of all 
plastic flow behavior.

Therefore in this study, we considered a data-driven 
solution to this problem. Specifically, we attempted to use 
statistical methods to automatically select key features 
using quality data as the objective variables, and the 
many features created in Section 4. 2 as the explanatory 
variables. A standardization process was performed 
for each data, and the weighting between features was 
handled equivalently.

Many algorithms have been proposed for automatic 
selection of features using statistical methods, including 
a regression model type6) and graphical model type7). 
However there are no judgment indexes for determining 
which algorithm is suitable in which cases, and in most 
cases the algorithm is selected based on experience. 
However each algorithm has suitability depending on the 
target data, and caution is required because the installed 
algorithm will not always produce valid solutions. In 
order to resolve this issue, in this report we considered 
logic that made combined use of multiple algorithms. An 
overview of the process used for selection of features is 
shown in Fig. 4. The four algorithms that were used are 
shown in Table 3. The characteristics of each algorithm 
are as shown below.
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1 Algorithm
(Stepwise) 
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(Lasso)
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(ElasticNet)
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(Graphical Lasso)
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Contribution
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Contribution
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Key Features

Fig. 4  Process for feature selection

Table 3  Statistical method algorithms

Algorithm Loss function

Stepwise

Lasso

ElasticNet

Graphical
Lasso
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(1) Stepwise8)

This is a regression method that searches for the 
optimal combination of explanatory variables while 
adding or removing explanatory variables to/from the 
learning model one at a time. This method has the 
disadvantage of the learning model estimations becoming 
unstable when there are groups of explanatory variables 
that have strong correlation.
(2) Lasso6)

This method adds an L1 regularization term to a 
regression model. Regularization allows this algorithm 
to avoid the Stepwise disadvantage described above. 
L1 regularization has the property of producing sparse 
solutions, and this property enables the automatic 
selection of variables. However it has the disadvantage 
of being able to select only a single variable when there 
is a group of explanatory variables that have strong 
correlation.
(3) ElasticNet9)

The regularization term is characterized by using 
the sum of the L1 norm and L2 norm. Because this has 
the effect of grouping explanatory variable groups that 
have strong correlation, this method is able to avoid the 
disadvantage of Lasso.
(4) Graphical Lasso7)

This method introduces sparsity into a Gaussian 
graphical model. The approach is different from that in (1)  
to (3), and it is characterized by identifying correlation 
between variables while eliminating spurious correlation.

After calculating the degree of contribution to quality 
of each feature using the four algorithms in the process 
shown in Fig. 4, the calculation results from each are 

combined in order to automatically select the features to 
input into SVR.

5.   Quality Prediction Results and 
Considerations

Here ,  in  o rder  to  ve r i fy  the  va l id i ty  o f  the 
aforementioned quality prediction method using in-
mold sensing information and a machine learning 
method that can consider non-linearity, we compared the 
determination coefficients that were calculated from the 
prediction results and actual measurement results for mass 
and inner diameter. We also attempted to automatically 
modify the molding conditions based on the prediction 
results in order to stabilize quality.

5. 1  Comparison of Prediction Results with and 
without In-mold Sensing Information

The prediction results for mass and inner diameter with 
and without in-mold sensing information are shown in 
Fig. 5. Figure 5 shows that the use of in-mold sensing 
information improved the determination coefficient for 
mass and inner diameter from 0.86 to 0.9 and from 0.8 
to 0.93 respectively. As theorized in Section 2. 1, it 
is assumed that this is because the molding condition 
settings deviated from the actual plastic flow behavior, 
and that the information obtained from sensors installed 
inside the mold is closer to the actual phenomenon.
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Fig. 5  Comparison of the determination coefficients with and 

without sensing information
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5. 2  Comparison of Prediction Results with and 
without Machine Learning

Next the prediction results for mass and inner diameter 
based on in-mold sensing information when using the 
machine learning non-linear regression method SVR 
and when using a classical multiple linear regression 
analysis method are shown in Fig. 6. Figure 6 shows 
that the use of the machine learning non-linear regression 
method SVR improved the determination coefficient for 
mass and inner diameter from 0.91 to 0.98 and from 0.8 
to 0.93 respectively. This is presumed to be because it 
was able to approximate the non-linearity of the plastic 
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PVT properties and the cooling process. Because it is 
extremely difficult to clarify all of the mechanisms related 
to this plastic non-linearity, the use of a machine learning 
method that considers non-linearity is considered to be 
effective, as theorized in Section 2. 2.
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Fig. 6  Comparison of the determination coefficients between 

SVR and multiple regression

5. 3 Automatic Modification of Molding Conditions
This section describes automatic modification of 

molding conditions to stabilize quality using the quality 
prediction method studied in this report. The architecture 
of the system is shown in Fig. 7. It automatically modifies 
molding conditions based on the differences between 
the predicted value and target value for mass and inner 
diameter in order to approximate the measured results 
to the target values. First, the pressure and temperature 
histories obtained for each molding are converted to 
features, and sent to the calculation server. When the 
features are received by the server, the learned model 
is used to predict quality. After the amount of molding 
condition modification is calculated based on the 
differences from the target values, the molding machine 
settings are automatically adjusted. A history of the 
measurement results for mass and inner diameter when 
the molding conditions were automatically modified 
using this system is shown in Fig. 8. In order to check 
the performance of this system, the quality value was 
forcibly deviated from the target value before performing 
automatic modification. The figure demonstrates that 
automatic modification of the molding conditions caused 
both mass and inner diameter to converge on the target 
values. Therefore this shows there is the possibility 
of applying the studied quality prediction method to 
automatic modification of molding conditions.
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Fig. 7  Architecture for automatic modification of molding 

conditions
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Fig. 8  Measured results of weight and inner diameter under 

automatic molding

6.  Conclusion
In this report, we constructed a molded product quality 

prediction system for mass and inner diameter of the ball 
bearing plastic retainer using in-mold sensing information 
and machine learning. Incorporating in-mold sensing 
information into learning by the machine learning model 
improved the determination coefficient, which indicates 
the degree of consistency between the prediction result 
and measurement result, for mass and inner diameter 
from 0.86 to 0.98 and from 0.8 to 0.93 respectively. In 
addition, the use of the machine learning non-linear 
regression method SVR improved the determination 
coefficient for mass and inner diameter from 0.91 to 0.98 
and from 0.8 to 0.93 respectively compared to a classical 
linear regression method. Furthermore, the results from an 
attempt to automatically modify the molding conditions 
using this method showed the potential for its application.
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